FlowMax: A Computational Tool for Maximum Likelihood Deconvolution of CFSE Time Courses
نویسندگان
چکیده
The immune response is a concerted dynamic multi-cellular process. Upon infection, the dynamics of lymphocyte populations are an aggregate of molecular processes that determine the activation, division, and longevity of individual cells. The timing of these single-cell processes is remarkably widely distributed with some cells undergoing their third division while others undergo their first. High cell-to-cell variability and technical noise pose challenges for interpreting popular dye-dilution experiments objectively. It remains an unresolved challenge to avoid under- or over-interpretation of such data when phenotyping gene-targeted mouse models or patient samples. Here we develop and characterize a computational methodology to parameterize a cell population model in the context of noisy dye-dilution data. To enable objective interpretation of model fits, our method estimates fit sensitivity and redundancy by stochastically sampling the solution landscape, calculating parameter sensitivities, and clustering to determine the maximum-likelihood solution ranges. Our methodology accounts for both technical and biological variability by using a cell fluorescence model as an adaptor during population model fitting, resulting in improved fit accuracy without the need for ad hoc objective functions. We have incorporated our methodology into an integrated phenotyping tool, FlowMax, and used it to analyze B cells from two NFκB knockout mice with distinct phenotypes; we not only confirm previously published findings at a fraction of the expended effort and cost, but reveal a novel phenotype of nfkb1/p105/50 in limiting the proliferative capacity of B cells following B-cell receptor stimulation. In addition to complementing experimental work, FlowMax is suitable for high throughput analysis of dye dilution studies within clinical and pharmacological screens with objective and quantitative conclusions.
منابع مشابه
Comparison Final Velocity for Land Yacht with a Rigid Wing and Cloth Sail
The powering requirement of a land yacht is one of the most important aspects of its design. In this respect the wind tunnel testing is an effective design tool. In fact, changing the parameters of the vehicle and testing the changes in the wind tunnel will give us a better understanding of the most efficient vehicle, and yet it is time consuming, expensive, and has inherent scaling errors. Ano...
متن کاملComputational analysis of CFSE proliferation assay.
CFSE based tracking of the lymphocyte proliferation using flow cytometry is a powerful experimental technique in immunology allowing for the tracing of labelled cell populations over time in terms of the number of divisions cells undergone. Interpretation and understanding of such population data can be greatly improved through the use of mathematical modelling. We apply a heterogenous linear c...
متن کاملSimulation-based methods for blind maximum-likelihood filter identification
Blind linear system identification consists in estimating the parameters of a linear time-invariant system given its (possibly noisy) response to an unobserved input signal. Blind system identification is a crucial problem in many applications which range from geophysics to telecommunications, either for its own sake or as a preliminary step towards blind deconvolution (i.e. recovery of the unk...
متن کاملRobust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive opt...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013